Hypothesis: Coupling between Resorption and Formation in Cancellous bone Remodeling is a Mechanically Controlled Event

نویسنده

  • Reinhold G. Erben
چکیده

Coupling is the process that links bone resorption to formation in a temporally and spatially coordinated manner within the remodeling cycle. In order to maintain skeletal integrity, it is of crucial importance that the amount of bone resorbed matches the amount of newly formed bone in each remodeling site. Although a number of different explanatory models have been developed, the mechanisms that couple bone resorption and formation in bone remodeling are still a matter of controversy. Here, I propose a model in which coupling is achieved by biomechanical strain sensed by osteocytes within the newly built bone package. In this model, the resorption cavity created by osteoclasts results in mechanical weakening of the structural element, and, thus, in increased strain under constant loading conditions. Subsequent bone formation is initiated by strain-sensitive osteocytes in the underlying bone matrix. After osteoblastic bone formation has started, the newly built osteocyte-osteoblast network detects strain. Once the mechanical strain within the newly built bone structural unit falls below a certain threshold, bone formation stops. In this biomechanical strain-driven model, osteoblasts do not need to "know" how much bone was previously resorbed in a given site. In addition, this model does not require the transfer of any information from bone-resorbing osteoclasts to bone-forming osteoblasts, because biomechanical strain "guides" osteoblasts through their job of re-filling the resorption cavity.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

The reversal phase of the bone-remodeling cycle: cellular prerequisites for coupling resorption and formation

The reversal phase couples bone resorption to bone formation by generating an osteogenic environment at remodeling sites. The coupling mechanism remains poorly understood, despite the identification of a number of 'coupling' osteogenic molecules. A possible reason is the poor attention for the cells leading to osteogenesis during the reversal phase. This review aims at creating awareness of the...

متن کامل

A theoretical analysis of long-term bisphosphonate effects on trabecular bone volume and microdamage.

Bisphosphonates increase bone mass and reduce fracture risk, but their anti-resorptive action may lead to increases in fatigue microdamage. To investigate how bisphosphonate effects influence changes in bone volume and microdamage in the long term, a strain-adaptive model of bone remodeling and microdamage balance was developed for a continuum-level volume of postmenopausal trabecular bone by i...

متن کامل

The effects of intravenous pamidronate on the bone tissue of children and adolescents with osteogenesis imperfecta.

Cyclical pamidronate infusions increase bone mass in children suffering from osteogenesis imperfecta. The histological basis for these effects remains unknown. Therefore, we compared parameters of iliac bone histomorphometry from 45 patients before and after 2.4 +/- 0.6 years of pamidronate treatment (age at the time of the first biopsy, 1.4-17.5 years; 23 girls). Although biopsy size did not c...

متن کامل

Bone modeling and remodeling: potential as therapeutic targets for the treatment of osteoporosis.

The adult skeleton is renewed by remodeling throughout life. Bone remodeling is a process where osteoclasts and osteoblasts work sequentially in the same bone remodeling unit. After the attainment of peak bone mass, bone remodeling is balanced and bone mass is stable for one or two decades until age-related bone loss begins. Age-related bone loss is caused by increases in resorptive activity an...

متن کامل

Effects of loading frequency on the functional adaptation of trabeculae predicted by bone remodeling simulation.

The process of bone remodeling is regulated by metabolic activities of many bone cells. While osteoclasts and osteoblasts are responsible for bone resorption and formation, respectively, activities of these cells are believed to be controlled by a mechanosensory system of osteocytes embedded in the extracellular bone matrix. Several experimental and theoretical studies have suggested that the s...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:

دوره 6  شماره 

صفحات  -

تاریخ انتشار 2015